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Solution 6

1. Identify the boundary points, interior points, interior and closure of the following sets in
R:

(a) [1, 2) ∪ (2, 5) ∪ {10}.
(b) [0, 1] ∩Q.

(c)
⋃∞
k=1(1/(k + 1), 1/k).

(d) {1, 2, 3, · · · } .

Solution.

(a) Boundary points: 1, 2, 5, 10. Interior points: (1, 2), (2, 5). Interior: (1, 2) ∪ (2, 5).
Closure: [1, 5] ∪ {10}.

(b) Boundary points: All points in [0, 1]. No interior point. Interior: the empty set φ.
Closure: [0, 1]

(c) Boundary points: {1/k : k ≥ 1}, 0. Interior points: all points in this set. Interior:
This set (because it is an open set). Closure: [0, 1].

(d) Boundary points 1, 2, 3, · · · . No interior points. Interior: φ. Closure: the set itself (it
is a closed set).

2. Identify the boundary points, interior points, interior and closure of the following sets in
R2:

(a) R ≡ [0, 1)× [2, 3) ∪ {0} × (3, 5).

(b) {(x, y) : 1 < x2 + y2 ≤ 9}.
(c) R2 \ {(1, 0), (1/2, 0), (1/3, 0), (1/4, 0), · · · }.

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment {0} ×
[3, 5]. Interior points: all points inside the rectangle. Interior (0, 1) × (3, 5). Closure
[0, 1]× [3, 5] ∪ {0} × [3, 5].

(b) Boundary points: all (x, y) satisfying x2 + y2 = 1 or x2 + y2 = 9. Interior points:
all points satisfying 1 < x2 + y2 < 9. Interior {(x, y) : 1 < x2 + y2 < 9}. Closure
{(x, y) : 1 ≤ x2 + y2 ≤ 9}.

(c) Boundary points: (0, 0), (1, 0), (1/2), (1/3, 0), · · · . Interior points: all points except
boundary points. Interior: R2 \ {(0, 0), (1, 0), (1/2), (1/3, 0), · · · }. Closure: R2.

3. Describe the closure and interior of the following sets in C[0, 1]:

(a) {f : f(x) > −1, ∀x ∈ [0, 1]}.
(b) {f : f(0) = f(1)}.

Solution.

(a) Closure: {f ∈ C[0, 1] : f(x) ≥ −1, ∀x ∈ [0, 1]}. Interior: The set itself. It is an open
set.

(b) Closure: The set itself. It is a closed set. Interior: φ. Let f satisfy f(0) = f(1).
For every ε > 0, it is clear we can find some g ∈ C[0, 1] satisfying ‖g − f‖∞ < ε but
g(0) 6= g(1). It shows that every metric ball Bε(f) must contain some functions lying
outside this set.
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4. Let A and B be subsets of (X, d). Show that A ∪B = A ∪B. Does A ∩B = A ∩B?

Solution. We have A ⊂ B whenever A ⊂ B right from definition. So A ∪ B ⊂ A ∪B.
Conversely, if x ∈ A ∪B, Bε(x) either has non-empty intersection with A or B. So there
exists εj → 0 such that Bεj (x) has nonempty intersection with A or B, so x ∈ A ∪B.

On the other hand, A ∩B = A ∩ B is not always true. For instance, consider intervals
(a, b) and (b, c). We have (a, b) ∩ (b, c) = {b} but (a, b) ∩ (b, c) = φ. Or you take A to be
the set of all rationals and B all irrationals. Then A ∩B = φ = φ but A ∩B = R !

5. Show that E = {x ∈ X : d(x,E) = 0} for every non-empty E ⊂ X.

Solution. Let A = {x ∈ X : d(x,E) = 0}. Claim that A is closed. Let xn → x where
xn ∈ A. Recalling that x 7→ d(x,E) is continuous, so d(x,E) = limn→∞ d(xn, E) = 0, that
is, x ∈ A. We conclude that A is a closed set. As it clearly contains E, so E ⊂ A since
the closure of E is the smallest closed set containing E. On the other hand, if x ∈ A, then
B1/n(x) ∩ E 6= φ. Picking xn ∈ B1/n(x) ∩ E, we have {xn} ⊂ E, xn → x, so x ∈ E.

6. Let E ⊂ (X, d). Show that E◦ is the largest open set contained in E in the sense that
G ⊂ E◦ whenever G ⊂ E is open.

Solution. Let G ⊂ E is open. For x ∈ G, there is some Bε(x) ⊂ G. But that means
Bε(x) ⊂ E too, so x is an interior point of E, that is, x ∈ E◦. We have shown G ⊂ E◦.
Next, we claim that E◦ is open. For, if x is an interior point, there is some Br(x) ⊂ E.
But then every point y ∈ Br(x) is also an interior point as Bρ(y) ⊂ Br(x) ⊂ E where
ρ = r − d(x, y).

7. Determine whether Z and Q are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

8. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b] ?

Solution. No. Since C[a, b] is complete, it suffices to show that the set of differentiable
functions is not closed. But this is easy, I leave you to verify the sequence of differentiable
functions fn(x) = (1/n + x2)1/2 in C[−1, 1] converges uniformly to the non-differentiable
function f(x) = |x|.

9. Optional. Let (X, d) be a metric space and Cb(X) the vector space of all bounded, con-
tinuous functions in X. Show that it forms a complete metric space under the sup-norm.
This problem will be used in the next problem.

Solution. Let {fn} be a Cauchy sequence in Cb(X). For ε > 0, there exists n1 such that

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε, ∀x ∈ X. (1)

It shows that {fn(x)} is a numerical Cauchy sequence, so limn→∞ fn(x) exists. We define
f(x) = limn→∞ fn(x). We check it is continuous at x0 as follows. By passing m → ∞ in
(1), we have

|f(x)−f(x0)| ≤ |f(x)−fn1(x)|+|fn1(x)−fn1(x0)|+|fn1(x0)−f(x0)| ≤ 2ε+|fn1(x)−fn1(x0)|.

As fn1 is continuous, there is some δ such that |fn1(x) − fn1(x0)| < ε for x ∈ Bδ(x0). It
follows that we |f(x)− f(x0)| < 3ε for x ∈ Bδ(x0), so f is continuous at x0. Now, letting
m→∞ in (1), we get |fn(x)−f(x)| ≤ ε for all n ≥ n1, so fn → f uniformly. In particular,
it means f is bounded.
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10. We define a metric on N, the set of all natural numbers by setting

d(n,m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ .
(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called∞ and define d̃(x, y) = d(x, y) when
x, y ∈ Z and d̃(x,∞) = 0 for all x ∈ Z or ∞.

11. Let (X, d) be a metric space. Fixing a point p ∈ X, for each x define a function

fx(z) = d(z, x)− d(z, p).

(a) Show that each fx is a bounded, uniformly continuous function in X.

(b) Show that the map x 7→ fx is an isometric embedding of (X, d) to Cb(X) (shorthand
for Cb(X,R)) . In other words,

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From |fx(z)| = |d(z, x) − d(z, p)| ≤ d(x, p), and from |fx(z) − fx(z′)| ≤ |d(z, x) −
d(z′, x)|+ |d(z′, p)−d(z, p)| ≤ 2d(z, z′), it follows that each fx is a bounded, uniformly
continuous function in X.

(b) |fx(z)− fy(z)| = |d(z, x)− d(z, y)| ≤ d(x, y), and equality holds taking z = x. Hence

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Let Y0 = {fx : x ∈ X} ⊂ Cb(X). Let Y be the closure of Y0 in the complete metric
space (Cb(X), ρ) with sup-norm ρ. Then (Y, ρ) is a completion of (X, d).

12. Optional. Let K be the collection of all non-empty closed and bounded sets in Rn. We
introduce a metric called the Hausdorff metric on K as follows. The set Eε is defined to
be the set {x+ εz : x ∈ E, |z| < 1} , ε > 0. For closed and bounded E,F , define

ρH(E,F ) = inf {ε : F ⊂ Eε, E ⊂ Fε} .

(a) Show that
Eε = {y ∈ Rn : d(y,E) < ε } .

(b) Show that

ρH(E,F ) = max

{
sup
x∈E

d(x, F ), sup
y∈F

d(y,E)

}
,

where d(x, F ) is the Euclidean distance from x to F .

(c) Show that ρH is a metric on K.
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(d) Let {Kn},Kn+1 ⊂ Kn, be a descending sequence in K. Show that

ρH(Kn,K∞)→ 0, as n→∞ ,

where K∞ = ∩jKj 6= φ.

Solution. Google.

13. Optional. In the previous problem, it is shown that the Hausdorff metric makes K, the
set of all non-empty closed and bounded sets in Rn, a metric space. Now show that it is
complete. Hint: Let {Kn} be a Cauchy sequence in K and consider the descending family
Hn =

⋃
j≥nKj . Apply Problem 12(c) and show Kn →

⋂
k≥1Hk .

Solution. Google.


