Solution 6

- 1. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R} :
 - (a) $[1,2) \cup (2,5) \cup \{10\}.$
 - (b) $[0,1] \cap \mathbb{Q}$.
 - (c) $\bigcup_{k=1}^{\infty} (1/(k+1), 1/k).$
 - (d) $\{1, 2, 3, \dots\}$.

Solution.

- (a) Boundary points: 1, 2, 5, 10. Interior points: (1, 2), (2, 5). Interior: $(1, 2) \cup (2, 5)$. Closure: $[1, 5] \cup \{10\}$.
- (b) Boundary points: All points in [0, 1]. No interior point. Interior: the empty set ϕ . Closure: [0, 1]
- (c) Boundary points: $\{1/k : k \ge 1\}, 0$. Interior points: all points in this set. Interior: This set (because it is an open set). Closure: [0, 1].
- (d) Boundary points $1, 2, 3, \cdots$. No interior points. Interior: ϕ . Closure: the set itself (it is a closed set).
- 2. Identify the boundary points, interior points, interior and closure of the following sets in \mathbb{R}^2 :
 - (a) $R \equiv [0,1) \times [2,3) \cup \{0\} \times (3,5).$
 - (b) $\{(x,y) : 1 < x^2 + y^2 \le 9\}.$
 - (c) $\mathbb{R}^2 \setminus \{(1,0), (1/2,0), (1/3,0), (1/4,0), \cdots \}.$

Solution.

- (a) Boundary points: the geometric boundary of the rectangle and the segment $\{0\} \times [3,5]$. Interior points: all points inside the rectangle. Interior $(0,1) \times (3,5)$. Closure $[0,1] \times [3,5] \cup \{0\} \times [3,5]$.
- (b) Boundary points: all (x, y) satisfying $x^2 + y^2 = 1$ or $x^2 + y^2 = 9$. Interior points: all points satisfying $1 < x^2 + y^2 < 9$. Interior $\{(x, y) : 1 < x^2 + y^2 < 9\}$. Closure $\{(x, y) : 1 \le x^2 + y^2 \le 9\}$.
- (c) Boundary points: $(0,0), (1,0), (1/2), (1/3,0), \cdots$. Interior points: all points except boundary points. Interior: $\mathbb{R}^2 \setminus \{(0,0), (1,0), (1/2), (1/3,0), \cdots\}$. Closure: \mathbb{R}^2 .
- 3. Describe the closure and interior of the following sets in C[0, 1]:
 - (a) $\{f: f(x) > -1, \forall x \in [0,1]\}.$
 - (b) $\{f: f(0) = f(1)\}.$

Solution.

- (a) Closure: $\{f \in C[0,1]: f(x) \ge -1, \forall x \in [0,1]\}$. Interior: The set itself. It is an open set.
- (b) Closure: The set itself. It is a closed set. Interior: ϕ . Let f satisfy f(0) = f(1). For every $\varepsilon > 0$, it is clear we can find some $g \in C[0, 1]$ satisfying $||g - f||_{\infty} < \varepsilon$ but $g(0) \neq g(1)$. It shows that every metric ball $B_{\varepsilon}(f)$ must contain some functions lying outside this set.

4. Let A and B be subsets of (X, d). Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Does $\overline{A \cap B} = \overline{A} \cap \overline{B}$?

Solution. We have $\overline{A} \subset \overline{B}$ whenever $A \subset B$ right from definition. So $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$. Conversely, if $x \in \overline{A \cup B}$, $B_{\varepsilon}(x)$ either has non-empty intersection with A or B. So there exists $\varepsilon_j \to 0$ such that $B_{\varepsilon_j}(x)$ has nonempty intersection with A or B, so $x \in \overline{A} \cup \overline{B}$.

On the other hand, $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is not always true. For instance, consider intervals (a, b) and (b, c). We have $\overline{(a, b)} \cap \overline{(b, c)} = \{b\}$ but $\overline{(a, b)} \cap \overline{(b, c)} = \phi$. Or you take A to be the set of all rationals and B all irrationals. Then $\overline{A \cap B} = \overline{\phi} = \phi$ but $\overline{A} \cap \overline{B} = \mathbb{R}$!

5. Show that $\overline{E} = \{x \in X : d(x, E) = 0\}$ for every non-empty $E \subset X$.

Solution. Let $A = \{x \in X : d(x, E) = 0\}$. Claim that A is closed. Let $x_n \to x$ where $x_n \in A$. Recalling that $x \mapsto d(x, E)$ is continuous, so $d(x, E) = \lim_{n \to \infty} d(x_n, E) = 0$, that is, $x \in A$. We conclude that A is a closed set. As it clearly contains E, so $\overline{E} \subset A$ since the closure of E is the smallest closed set containing E. On the other hand, if $x \in A$, then $B_{1/n}(x) \cap E \neq \phi$. Picking $x_n \in B_{1/n}(x) \cap E$, we have $\{x_n\} \subset E, x_n \to x$, so $x \in \overline{E}$.

6. Let $E \subset (X, d)$. Show that E° is the largest open set contained in E in the sense that $G \subset E^{\circ}$ whenever $G \subset E$ is open.

Solution. Let $G \subset E$ is open. For $x \in G$, there is some $B_{\varepsilon}(x) \subset G$. But that means $B_{\varepsilon}(x) \subset E$ too, so x is an interior point of E, that is, $x \in E^{\circ}$. We have shown $G \subset E^{\circ}$. Next, we claim that E° is open. For, if x is an interior point, there is some $B_r(x) \subset E$. But then every point $y \in B_r(x)$ is also an interior point as $B_{\rho}(y) \subset B_r(x) \subset E$ where $\rho = r - d(x, y)$.

7. Determine whether \mathbb{Z} and \mathbb{Q} are complete sets in \mathbb{R} .

Solution. \mathbb{Z} is a closed subset so it is complete. On the other hand, the closure of \mathbb{Q} is \mathbb{R} , it is not complete.

- 8. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b]? Solution. No. Since C[a, b] is complete, it suffices to show that the set of differentiable functions is not closed. But this is easy, I leave you to verify the sequence of differentiable functions $f_n(x) = (1/n + x^2)^{1/2}$ in C[-1, 1] converges uniformly to the non-differentiable function f(x) = |x|.
- 9. Optional. Let (X, d) be a metric space and $C_b(X)$ the vector space of all bounded, continuous functions in X. Show that it forms a complete metric space under the sup-norm. This problem will be used in the next problem.

Solution. Let $\{f_n\}$ be a Cauchy sequence in $C_b(X)$. For $\varepsilon > 0$, there exists n_1 such that

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} < \varepsilon, \quad \forall x \in X.$$
(1)

It shows that $\{f_n(x)\}$ is a numerical Cauchy sequence, so $\lim_{n\to\infty} f_n(x)$ exists. We define $f(x) = \lim_{n\to\infty} f_n(x)$. We check it is continuous at x_0 as follows. By passing $m \to \infty$ in (1), we have

$$|f(x) - f(x_0)| \le |f(x) - f_{n_1}(x)| + |f_{n_1}(x) - f_{n_1}(x_0)| + |f_{n_1}(x_0) - f(x_0)| \le 2\varepsilon + |f_{n_1}(x) - f_{n_1}(x_0)|$$

As f_{n_1} is continuous, there is some δ such that $|f_{n_1}(x) - f_{n_1}(x_0)| < \varepsilon$ for $x \in B_{\delta}(x_0)$. It follows that we $|f(x) - f(x_0)| < 3\varepsilon$ for $x \in B_{\delta}(x_0)$, so f is continuous at x_0 . Now, letting $m \to \infty$ in (1), we get $|f_n(x) - f(x)| \le \varepsilon$ for all $n \ge n_1$, so $f_n \to f$ uniformly. In particular, it means f is bounded.

10. We define a metric on \mathbb{N} , the set of all natural numbers by setting

$$d(n,m) = \left|\frac{1}{n} - \frac{1}{m}\right| \; .$$

- (a) Show that it is not a complete metric.
- (b) Describe how to make it complete by adding one new point.

Solution. The sequence $\{n\}$ is a Cauchy sequence in this metric but it has no limit. Its completion is obtained by adding an ideal point called ∞ and define $\tilde{d}(x, y) = d(x, y)$ when $x, y \in \mathbb{Z}$ and $\tilde{d}(x, \infty) = 0$ for all $x \in \mathbb{Z}$ or ∞ .

11. Let (X, d) be a metric space. Fixing a point $p \in X$, for each x define a function

$$f_x(z) = d(z, x) - d(z, p).$$

- (a) Show that each f_x is a bounded, uniformly continuous function in X.
- (b) Show that the map $x \mapsto f_x$ is an isometric embedding of (X, d) to $C_b(X)$ (shorthand for $C_b(X, \mathbb{R})$). In other words,

$$||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X$$

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring. Solution.

- (a) From $|f_x(z)| = |d(z,x) d(z,p)| \le d(x,p)$, and from $|f_x(z) f_x(z')| \le |d(z,x) d(z',x)| + |d(z',p) d(z,p)| \le 2d(z,z')$, it follows that each f_x is a bounded, uniformly continuous function in X.
- (b) $|f_x(z) f_y(z)| = |d(z, x) d(z, y)| \le d(x, y)$, and equality holds taking z = x. Hence $||f_x - f_y||_{\infty} = d(x, y), \quad \forall x, y \in X.$
- (c) Let $Y_0 = \{f_x : x \in X\} \subset C_b(X)$. Let Y be the closure of Y_0 in the complete metric space $(C_b(X), \rho)$ with sup-norm ρ . Then (Y, ρ) is a completion of (X, d).
- 12. Optional. Let \mathcal{K} be the collection of all non-empty closed and bounded sets in \mathbb{R}^n . We introduce a metric called the Hausdorff metric on \mathcal{K} as follows. The set E_{ε} is defined to be the set $\{x + \varepsilon z : x \in E, |z| < 1\}, \varepsilon > 0$. For closed and bounded E, F, define

$$\rho_H(E,F) = \inf \left\{ \varepsilon : F \subset E_{\varepsilon}, E \subset F_{\varepsilon} \right\}.$$

(a) Show that

$$E_{\varepsilon} = \{ y \in \mathbb{R}^n : d(y, E) < \varepsilon \}$$

(b) Show that

$$\rho_H(E,F) = \max\left\{\sup_{x\in E} d(x,F), \quad \sup_{y\in F} d(y,E)\right\} ,$$

where d(x, F) is the Euclidean distance from x to F.

(c) Show that ρ_H is a metric on \mathcal{K} .

(d) Let $\{K_n\}, K_{n+1} \subset K_n$, be a descending sequence in \mathcal{K} . Show that

$$\rho_H(K_n, K_\infty) \to 0, \quad \text{as } n \to \infty,$$

where $K_{\infty} = \bigcap_{j} K_{j} \neq \phi$.

Solution. Google.

13. Optional. In the previous problem, it is shown that the Hausdorff metric makes \mathcal{K} , the set of all non-empty closed and bounded sets in \mathbb{R}^n , a metric space. Now show that it is complete. Hint: Let $\{K_n\}$ be a Cauchy sequence in \mathcal{K} and consider the descending family $H_n = \overline{\bigcup_{j\geq n} K_j}$. Apply Problem 12(c) and show $K_n \to \bigcap_{k\geq 1} H_k$.

Solution. Google.