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Solution 6

1. Identify the boundary points, interior points, interior and closure of the following sets in
R:

(a) [1,2)U(2,5) U{10}.

(b) [0,1]NQ.

(e) Upza(1/(k+1),1/k).

(d) {1,2,3,---}.

Solution.

(a) Boundary points: 1,2,5,10. Interior points: (1,2),(2,5). Interior: (1,2)U (2,5).
Closure: [1,5] U {10}.

(b) Boundary points: All points in [0,1]. No interior point. Interior: the empty set ¢.

Closure: [0, 1]

(c) Boundary points: {1/k: k > 1},0. Interior points: all points in this set. Interior:
This set (because it is an open set). Closure: [0, 1].

(d) Boundary points 1,2,3,---. No interior points. Interior: ¢. Closure: the set itself (it
is a closed set).

2. Identify the boundary points, interior points, interior and closure of the following sets in
R2:
(a) R=10,1) x [2,3) U {0} x (3,5).
(b) {(z,y): 1 <a®+y* <9}
(C) RZ \ {(L O)a (1/2a 0)7 (1/37 O)a (1/4a O)a T }

Solution.

(a) Boundary points: the geometric boundary of the rectangle and the segment {0} x
[3, 5]. Interior points: all points inside the rectangle. Interior (0,1) x (3,5). Closure
[0,1] x [3,5] U {0} x [3,5].

(b) Boundary points: all (x,y) satisfying 22 + 2> = 1 or 22 + %> = 9. Interior points:
all points satisfying 1 < 22 + 42 < 9. Interior {(z,y) : 1 < 2% + y* < 9}. Closure
{(z,y): 1<2?+¢*> <9}

(c) Boundary points: (0,0), (1,0),(1/2),(1/3,0),---. Interior points: all points except
boundary points. Interior: R?\ {(0,0), (1,0),(1/2),(1/3,0),---}. Closure: R2.

3. Describe the closure and interior of the following sets in C]0, 1]:

(a) {f: f(x)>—1, Yz €]0,1]}.
(b) {f: F(0) = f(1)}.

Solution.

(a) Closure: {f € C[0,1] : f(z) > —1, Vz € [0,1]}. Interior: The set itself. It is an open
set.

(b) Closure: The set itself. It is a closed set. Interior: ¢. Let f satisfy f(0) = f(1).
For every € > 0, it is clear we can find some g € C]0, 1] satisfying ||g — f|lcc < € but
9(0) # g(1). It shows that every metric ball B.(f) must contain some functions lying
outside this set.
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4. Let A and B be subsets of (X,d). Show that AUB = AUB. Does ANB = AN B?

Solution. We have A C B whenever A C B right from definition. So AUB C AU B.
Conversely, if z € AU B, B:(x) either has non-empty intersection with A or B. So there
exists €; — 0 such that B, (x) has nonempty intersection with A or B, so x € AU B.

On the other hand, AN B = AN B is not always true. For instance, consider intervals

(a,b) and (b,c). We have (a,b) N (b,c) = {b} but (a,b) N (b,c) = ¢. Or you take A to be
the set of all rationals and B all irrationals. Then ANB =¢ =¢ but ANB =R !

5. Show that E = {z € X : d(z,E) = 0} for every non-empty £ C X.

Solution. Let A = {z € X : d(z,E) = 0}. Claim that A is closed. Let x,, — x where
zn € A. Recalling that x — d(z, E) is continuous, so d(z, E) = lim,_,o d(zy, E) = 0, that
is, # € A. We conclude that A is a closed set. As it clearly contains E, so E C A since
the closure of E is the smallest closed set containing . On the other hand, if x € A, then

Byn(x) N E # ¢. Picking z, € By/,(z) N E, we have {x,} C E, 2, = z,50 2 € E.

6. Let £ C (X,d). Show that E° is the largest open set contained in E in the sense that
G C E° whenever G C F is open.

Solution. Let G C E is open. For x € G, there is some B.(x) C G. But that means
B.(z) C F too, so x is an interior point of E, that is, x € E°. We have shown G C E°.
Next, we claim that E° is open. For, if z is an interior point, there is some B,(z) C E.
But then every point y € B,(x) is also an interior point as B,(y) C B,(x) C E where

p=r—dxy).
7. Determine whether Z and QQ are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

8. Does the collection of all differentiable functions on [a, b] form a complete set in Cla,b] ?

Solution. No. Since C|a, b is complete, it suffices to show that the set of differentiable
functions is not closed. But this is easy, I leave you to verify the sequence of differentiable
functions f,,(z) = (1/n + 22)Y/? in C[~1, 1] converges uniformly to the non-differentiable
function f(z) = |x|.

9. Optional. Let (X,d) be a metric space and Cj(X) the vector space of all bounded, con-
tinuous functions in X. Show that it forms a complete metric space under the sup-norm.
This problem will be used in the next problem.

Solution. Let {f,} be a Cauchy sequence in Cy(X). For £ > 0, there exists ny such that

[fn(@) = fm (@) < Ifn = fmlle <&, VzeX. (1)

It shows that {f,(z)} is a numerical Cauchy sequence, so lim,,_,~ fn(z) exists. We define
f(x) = limy 00 frn(x). We check it is continuous at z( as follows. By passing m — oo in
(1), we have

f (@)= f(zo)| < [f (@)= fy (@) [+ frs (€)= fry (@0) [+ frny (0) = f (0) | < 26+ fry (€)= fry (w0)].

As fp, is continuous, there is some ¢ such that |f,, (x) — fn,(z0)| < € for x € Bs(xg). It
follows that we |f(z) — f(z0)| < 3¢ for @ € Bs(xo), so f is continuous at zg. Now, letting
m — oo in (1), we get | fn(z) — f(x)| < e for allm > ny, so f,, — f uniformly. In particular,
it means f is bounded.
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10. We define a metric on N, the set of all natural numbers by setting

1 1

d(n,m) = .

(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called co and define d(z,y) = d(z,y) when
x,y € Z and d(x,00) = 0 for all x € Z or oo.

11. Let (X, d) be a metric space. Fixing a point p € X, for each x define a function

fz(2) =d(z,x) — d(z,p).

(a) Show that each f, is a bounded, uniformly continuous function in X.

(b) Show that the map = — f, is an isometric embedding of (X, d) to C,(X) (shorthand
for Cp(X,R)) . In other words,

wa—fyHoo:d(l’vy), VJ/‘,?/GX-

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.
Solution.
(a) From [fy(2)|] = |d(z,2) — d(z,p)| < d(z,p), and from |fp(2) — fu(2')] < |d(z,2) -

d(z',x)|+|d(Z,p)—d(z,p)| < 2d(z,72), it follows that each f, is a bounded, uniformly
continuous function in X.

(b) |fz(2) = fy(2)| = |d(z,2) — d(z,y)| < d(x,y), and equality holds taking z = x. Hence
||fz_fy‘|oo:d(xay)7 Vx,yEX.

(c) Let Yo = {fs : x € X} C Cp(X). Let Y be the closure of Yp in the complete metric
space (Cy(X), p) with sup-norm p. Then (Y, p) is a completion of (X, d).

12. Optional. Let I be the collection of all non-empty closed and bounded sets in R". We
introduce a metric called the Hausdorff metric on K as follows. The set E. is defined to
be the set {x +cz: z € E, |2| <1} ,e¢ > 0. For closed and bounded E, F', define

pu(E,F)=inf{e: FC E., EC F.}.

(a) Show that
E.={yeR": d(y,E)<e}.

(b) Show that

pH(E,F)ZmaX{Supd(:v,F), supd(y,E)} ,
zel yelF

where d(z, F') is the Euclidean distance from z to F.

(c) Show that py is a metric on K.
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13.

(d) Let {Ky}, Kny1 C Ky, be a descending sequence in K. Show that
oKy, Ky) — 0, asn— oo,
where Koo = N; K # ¢.
Solution. Google.

Optional. In the previous problem, it is shown that the Hausdorff metric makes K, the
set of all non-empty closed and bounded sets in R, a metric space. Now show that it is
complete. Hint: Let {K,} be a Cauchy sequence in K and consider the descending family
H,, = U;>, Kj- Apply Problem 12(c) and show K, — (> Hi, -

Solution. Google.



